
Medbiq	xAPI	Workshop	Report	

Authors:		
David	Topps1,	Corey	Albersworth2,	Ellen	Meiselman3,	Maureen	Topps1,	Sarah	Topps4,	
Sandra	Morrison1	
	

1	University	of	Calgary	
2	Athabasca	University	
3	University	of	Michigan	
4	Simon	Fraser	University	

Background:	
	
How	do	we	know	our	learners	are	competent?	Upon	what	do	we	base	this?	Observations	
and	judgments	from	teachers,	using	ITERs	and	MCQs	form	the	basis	of	the	vast	majority	of	
our	assessments.	While	these	work	well	for	the	majority	of	learners	and	teachers,	we	are	
less	effective	at	early	detection	of	maladaptive	learners	or	those	who	are	struggling.	We	
tend	to	give	the	benefit	of	the	doubt,	thinking	this	a	kindness,	but	delayed	detection	and	
diagnosis	of	learners	in	difficulty	is	doing	nobody	a	favor.		
	
In	our	high	school	math	tests,	we	are	concerned	that	little	Johnny	not	only	got	the	right	
answer	but	used	the	appropriate	steps	and	techniques	in	deriving	that	answer.	Similarly,	in	
medical	education,	we	should	be	concerned	with	assessment	of	more	than	memorization,	
and	look	at	problem	solving	and	efficient,	effective	task	completion	in	a	variety	of	contexts.	
We	should	look	at	what	our	learners	do,	not	what	they	or	their	teachers	say	they	do.	Hence,	
the	rise	in	interest	in	activity	metrics.	This	concept	is	at	the	peak	of	Miller’s	Pyramid	of	
Assessment	(Miller,	1990)demonstrating	professional	authenticity,	moving	from	“knows”	
to	“knows	how”	to	“shows	how”	to	“does”	(although	doubt	has	been	raised	about	the	
evidence	to	support	Miller’s	pyramid,	but	we	digress(Lalley	&	Miller,	2007)).		
	
This	is	not	a	new	concept,	but	our	abilities	to	measure	such	activities	with	the	necessary	
richness	of	detail	has	largely	been	compromised	by	cost	and	practicality	and	hence,	we	rely	
on	compound	observations	and	judgments	of	human	sensors	–	our	teachers.	But	now,	with	
the	plethora	of	cheap	devices	and	sensors,	the	possibilities	for	gathering	meaningful	data	
about	the	learning	process	have	greatly	changed.		
	
In	our	previous	studies,	using	mixed	simulation	modalities	in	our	Health	Services	Virtual	
Organization	(HSVO)	project,	we	were	able	to	combine	multiple	learning	tools	and	systems,	
using	a	sophisticated	network-enabled	platform.	We	combined	virtual	patients,	high-
fidelity	simulators,	low-latency	video	collaboration,	virtual	anatomy	models,	and	light-field	
camera	arrays	to	generate	virtual	points	of	view.	We	were	able	to	create	powerful	learning	
designs	for	collaborating	groups	of	learners	across	multiple	disciplines,	institutions,	and	
continents,	in	real-time	with	many	concurrent	data	streams	tracking	their	every	action.		
	

Both	learners	and	teachers	enthusiastically	adopted	these	multi-modality	simulation	
designs.	We	observed	a	progression	of	skills	development	and	collaborative	problem	
solving	approaches	in	all	the	groups.	Analysis	of	the	activity	streams,	which	was	largely	
based	on	manual	coding	of	videotaped	activities,	proved	to	be	extremely	laborious,	with	a	
high	cost	in	effort.	We	did	observe	intense	clusters	of	activity,	centered	on	boundary	
changes	in	context,	somewhat	analogous	to	phase	changes	in	simpler	biological	and	
physical	processes.	The	vigorous	up-spike	in	such	activities	was	often	hard	to	keep	up	with,	
and	sometimes	missed	by	bored	assessors	skipping	through	long	periods	of	minimal	state	
change.	Humans	do	not	do	well	with	this	approach	–	machine	sensors	are	much	more	
reliable	and	efficient	in	such	monitoring.		
	
The	HSVO	project	demonstrated	some	extraordinary	learning	activities	but	was	a	very	
costly	endeavor,	with	high	infrastructure	needs	(user-directed	light	pipes,	high	
performance	cluster	computing),	highly	skilled	personnel,	and	dependence	on	high	levels	
of	technology	with	limited	portability.	While	the	core	middleware	layer,	Savoir,	was	
designed	to	act	as	an	intermediary	between	many	different	device	types	and	systems,	it	
was	not	very	flexible	and	required	an	overly	tight	degree	of	integration	and	binding	
between	Application	Programming	Interfaces	(APIs).			
	
In	many	ways,	this	was	similar	to	the	problems	encountered	with	attempting	to	blend	
information	streams	across	other	educational	platforms	using	SCORM.	It	was	a	bold	
attempt	at	the	time	to	integrate	data	from	many	sources	with	the	core	Learning	
Management	Systems	(LMSs).	Its	was	dependent	on	the	central	structure	of	the	LMS	-	an	
architectural	model	which	is	not	particularly	suitable	to	curricular	structure	of	most	
medical	schools.	Its	restrictive	data	structures	made	SCORM	vulnerable	to	all	the	ongoing	
changes	at	each	side	of	every	system	interface.		
	
This	very	challenge,	facing	the	adopters	of	SCORM,	drove	the	development	of	the	
Experience	API	(xAPI,	also	known	as	the	Tin	Can	API).	Commissioned	by	Advanced	
Distributed	Learning	(ADL),	it	was	originally	developed	by	Andrew	Downes	and	team	at	
Rustici	Software.	xAPI	has	a	much	simpler,	more	flexible	and	open	structure	based	on	
Subject-Verb-Object	triplets	that	are	similar	to	the	Resource	Description	Framework	
	(RDF).		
	
To	promote	the	advance	of	data	interoperability	standards	in	this	area	of	activity	metrics,	
the	Medbiquitous	Learning	Experience	Working	Group	was	formed.	This	group	chose	xAPI	
as	their	central	mechanism	to	coordinate	and	connect	such	activity	metrics,	but	is	also	
monitoring	other	similar	protocols.	The	group	has	been	working	with	key	players	and	
organizations	relevant	to	xAPI,	with	academic,	government	and	industry	representation.		
	
This	report	describes	the	activities	within	and	leading	up	to	an	intense	workshop	about	
xAPI	and	blended	learning	at	the	Medbiq	annual	conference	in	Baltimore,	in	May	2016.	This	
report	assumes	some	familiarity	with	the	principles	and	processes	surrounding	the	use	of	
the	Experience	API.	There	are	many	other	excellent	articles	out	there	explaining	these	basic	
principles	better	than	we	can	in	the	space	available	here.		
	

This	report	also	does	not	follow	the	traditional	IMRAD	layout	of	a	single	research	
intervention.	It	is	intended	to	be	descriptive	of	the	design-based	research	approach	that	we	
took	in	our	development	of	the	tools	and	resources	that	culminated	in	our	workshop.	See	
Discussion	for	more	on	this.		
	
Developing	xAPI	Profiles	
	
The	Experience	API	is	simple	in	concept:	the	Subject-Verb-Object	construct	has	been	
described	as:		

Bob Did This	
	
But,	in	order	for	the	xAPI	statements	to	be	meaningfully	compared	across	sources,	when	
they	are	stored	in	the	Learning	Records	Store	(LRS),	there	needs	to	be	some	
standardization	around	the	vocabularies	used.	Within	this	simple	structure,	
standardization	of	the	Verbs	used,	along	with	their	meaning	and	context	is	the	first	thing	to	
tackle.		
	
Groups	of	verbs,	and	other	usage	requirements,	that	are	associated	with	a	common	set	of	
activities	are	combined	into	sets	known	as	Profiles.	The	Medbiq	Learning	Experience	
Working	Group	has	taken	on	the	task	of	defining	a	series	of	Profiles	to	support	medical	
education	activities	such	as	simulations	and	scenarios.	The	group	chose	to	start	with	the	
Virtual	Patient	xAPI	Profile	(Topps,	Meiselman,	&	Strothers,	2016),	as	there	already	exists	
some	excellent	base	work	around	the	Medbiq	Virtual	Patient	data	standards,	and	the	
related	activities	are	relatively	well	constrained	with	good	commonality	across	platforms.		
	
The	group	plans	to	continue	to	define	a	series	of	Profiles,	relating	to	mannequins	and	task	
trainers,	standardized	patients,	scenarios	and	blended	simulations,	and	virtual	worlds,	in	
collaboration	with	other	Medbiq	Working	Groups	such	as	Competencies,	along	with	other	
partners	and	interested	organizations.		
	
Developing	a	standard	and	designing	the	profiles	that	describe	it	requires	a	core	structure	
and	theoretical	design,	but	if	this	is	not	grounded	in	the	practicalities	of	implementation,	it	
is	easy	for	the	standards	to	become	isolated	and	esoteric.	Accordingly,	Medbiq	has	been	
very	active	at	promoting	learning	sessions	and	workshops	around	xAPI	over	the	past	3	
years.	For	this	year’s	workshop	(Meiselman,	Topps,	&	Albersworth,	2016),	we	assembled	a	
learning	design	that	would	integrate	a	broad	variety	of	learning	activities,	with	activity	
metrics	derived	from	multiple	concurrent	sources.		
	
This	endpoint	and	timeline	greatly	facilitated	a	more	efficient	and	collaborative	approach.	
It	also	generated	much	interest	in	the	xAPI	community	and	we	were	fortunate	beneficiaries	
of	many	collaborative	activities	and	problem	solving,	far	exceeding	our	expectations.	
Frankly,	we	were	astounded	by	how	helpful	everybody	was	in	moving	things	forwards.	
This	is	definitely	a	great	strength	of	working	with	xAPI	at	present.		
	

Developing	a	workshop	
	
Based	on	our	experiences	with	the	HSVO	Project,	and	its	power	in	combining	multiple	
simulation	modalities	into	effective	learning	scenarios,	we	created	a	simple	scenario	that	
would	demonstrate	a	wide	variety	of	activity	metrics	from	multiple	concurrent	sources.		
	
To	contrast	with	the	complexity	and	cost	of	the	HSVO	Project,	we	also	chose	to	base	our	
learning	design	on	much	simpler	and	cheaper	devices.	HSVO	cost	more	than	$2	million;	the	
average	“disposable	income”	for	an	educational	research	project	is	more	like	$5-10k,	so	we	
wanted	to	demonstrate	what	is	possible	on	a	much	more	restricted	budget.		
	
In	particular,	we	were	interested	in	exploring	what	could	be	done	with	the	cheap	sensors	
and	simple	computing	cores	available	on	the	Arduino	platform,	which	is	designed	for	
hobbyist	use	and	very	low	budgets.	There	are	other	similar	devices	such	as	Raspberry	Pi,	
which	also	have	great	promise,	but	a	quick	environmental	scan	showed	Arduino	to	be	the	
most	suitable	to	our	needs.		
	
In	our	HSVO	Project,	we	found	the	open-source	virtual	patient	platform,	OpenLabyrinth,	to	
be	a	very	effective	integrator	of	simulation	related	activities.	It	was	excellent	at	providing	
flexible,	easily	modifiable	“contextual	glue”	to	hold	the	various	components	of	a	learning	
scenario	together.	Tight	coupling,	using	the	Savoir	middleware,	proved	too	inflexible	in	the	
HSVO	Project.	The	more	open	approach	afforded	by	xAPI	was	more	promising.	
	
Developing	a	Quiver	of	xAPI	sources	
	
This	entailed	the	incorporation	of	xAPI	into	OpenLabyrinth.	We	were	fortunate	in	two	
ways:	we	had	secured	funding	via	a	Catalyst	Grant	from	the	O’Brien	Institute	of	Public	
Health	at	the	University	of	Calgary	to	extend	OpenLabyrinth	with	improved	activity	metrics	
and	enhanced	integration	with	other	research	platforms;	and	the	inherent	architecture	of	
OpenLabyrinth,	which	already	contained	a	useful	set	of	internal	activity	metrics,	and	was	
highly	conducive	to	integration	of	xAPI	statement	output.	We	were	pleased	to	see	that	this	
was	possible	with	less	development	time	than	we	had	budgeted	for,	and	in	a	shorter	
timeline	than	anticipated	because	the	existing	data	structures	were	so	good.				
	
We	based	the	xAPI	statement	formatting	on	the	Medbiq	xAPI	Virtual	Patient	Profile,	and	
also	took	the	opportunity	to	reflexively	improve	the	Medbiq	profile	by	considering	some	of	
the	practical	implications	as	they	pertained	to	our	cases	and	scenarios.	This	two-way	
reciprocal	development	was	carried	out	with	full	collaboration	with	other	working	group	
members	and	the	xAPI	community.	All	source	code	is	fully	documented	on	Github	at	
https://github.com/olab/Open-Labyrinth	and	we	are	happy	to	communicate	with	other	
development	groups	about	some	of	the	small	challenges	that	we	faced	in	our	
implementation.		
	
While	we	were	exploring	other	ways	in	which	we	could	capture	activity	metrics	in	our	
scenario,	using	a	number	of	different	collection	mechanisms,	we	came	across	the	

GrassBlade	xAPI	Companion	(www.nextsoftwaresolutions.com/grassblade-xapi-companion),	a	
simple	useful	utility	that	provides	xAPI	statements	from	WordPress	activities.	Since	we	
already	use	WordPress	for	our	OpenLabyrinth	support	site	and	blog,	this	presented	an	
ideal	opportunity	to	extend	our	use	of	web	platforms	for	additional	data	gathering	and	
activity	monitoring.		
	
We	then	implemented	the	GrassBlade	LRS	on	our	servers.	We	were	pleased	to	note	that	the	
GrassBlade	LRS	also	uses	MySQL	for	its	internal	database,	as	do	both	OpenLabyrinth	and	
WordPress.	This	greatly	simplified	some	of	the	integration	and	testing	of	data	transfer	
between	these	software	applications.	We	had	been	quite	concerned	about	what	type	of	
database	infrastructure	to	use,	as	our	initial	readings	on	the	topic	of	LRSs	seemed	to	
suggest	that	a	noSQL	database,	such	as	Mongo	DB,	was	desirable	(Abbey,	2016)(Kaplan,	
2014)(Korneliusz,	2014;	Mei,	2013).	Since	our	development	teams	were	much	more	
familiar	with	SQL,	this	presented	a	significant	potential	barrier.		
	
There	was	a	third	factor	which	we	found	attractive	for	choosing	GrassBlade	as	our	primary	
LRS	for	testing.	There	is	a	flat	pricing	structure	per	LRS	instance,	without	additional	costs	
based	on	the	number	of	statements	stored.	In	our	early	phases,	we	had	very	little	idea	of	
the	number	of	statements	that	we	would	be	storing	or	of	the	size	of	the	databases	we	
would	generate.	We	were	alarmed	to	hear	of	another	similar	project	at	a	previous	Medbiq	
conference	that	managed	to	generate	300,000	xAPI	statements	within	36	hours,	which	
created	a	sizeable	bill	–	something	our	funders	were	keen	to	avoid.		
	
For	our	initial	testing,	another	advantage	of	this	approach	became	apparent:	it	was	simple	
to	generate	xAPI	statements	from	our	WordPress	site	(http://openlabyrinth.ca)	and	
examine	them	in	our	GrassBlade	LRS.	This	gave	us	greater	practical	familiarity	with	the	
formatting	of	xAPI	statements	and	some	of	the	syntactical	rules	imposed	by	the	LRS.	We	
were	fortunate	in	that	the	GrassBlade	LRS	is	relatively	forgiving	in	its	xAPI	statement	
interpretation,	which	afforded	greater	experimentation	with	data	sources	in	the	early	
phases.		
	
During	our	explorations	of	WordPress	and	xAPI	statement	generation,	we	also	came	across	
H5P	widgets	(https://h5p.org).	The	H5P	project	has	been	developing	interactive	widgets	that	
can	be	incorporated	into	a	number	of	platforms,	such	as	WordPress,	Moodle,	and	Drupal.	
The	initial	attraction	is	that	many	of	these	H5P	widgets	generate	xAPI	statements	of	their	
own.	For	this,	they	require	a	simple	intermediary	framework	–	there	is	one	available	as	a	
WordPress	plugin.	This	meant	that	we	were	able	to	implement	another	source	of	xAPI	
statements	with	less	than	an	hour’s	work.		
	
We	then	noted	that,	in	addition	to	being	open-source,	H5P	makes	it	easy	to	incorporate	
their	intermediary	supporting	framework	into	one’s	own	application.	This	was	ideal	for	
incorporating	H5P	widgets	into	OpenLabyrinth	and	this	was	accomplished	with	only	a	
modicum	of	developer	time,	giving	us	yet	another	source	of	xAPI	statements.		
	
The	H5P	widget	design	interface	is	very	simple	to	work	with,	allowing	us	to	rapidly	
generate	a	number	of	interactive	user	interface	extensions,	extending	the	utility	of	both	the	

WordPress	and	OpenLabyrinth	platforms.	We	were	also	delighted	to	discover	that	widgets	
created	for	one	platform	are	easily	portable	to	another,	further	multiplying	our	
development	efforts.		
	
Developing	Sensor	Hardware	
	
From	these	multiple	experiments	with	generating	xAPI	statements	from	all	these	sources,	
we	were	then	more	easily	able	to	visualize	how	one	might	generate	raw	xAPI	statements,	
using	some	biometric	sensors	and	the	very	simple	Arduino	hardware	platform.		
	
Initially,	this	was	only	intended	to	be	a	proof	of	concept	demonstration	of	the	feasibility	of	
generating	such	xAPI	statements	and	the	simplicity	of	their	formatting.	The	Arduino	
platform	is	renowned	for	being	cheap	and	easy	to	work	with,	and	already	has	a	wide	
variety	of	cheap	sensors	that	are	largely	plug	and	play.		
	
In	accordance	with	the	overall	learning	design	for	the	workshop,	where	we	hoped	to	
demonstrate	the	ability	to	measure	a	broad	variety	of	concurrent	activities,	we	selected	
sensors	that	might	give	us	some	crude	indication	of	stress	levels	in	the	participants.	We	
anticipated	that	throwing	such	a	plethora	of	activities	into	the	mix	might	become	quite	
chaotic	(makes	for	a	fun	workshop!)	and	hard	to	follow.		
	

	
Figure	1:	showing	the	Arduino	sensors	in	use	(left	hand)	while	the	subject	played	an	OpenLabyrinth	virtual	
patient.	Right	screen	shows	sensor	output	in	real-time	

For	the	biometric	sensors,	we	chose	a	combination	of	heart	rate	and	galvanic	skin	response	
(GSR).	These	are	well	known	to	be	associated	with	stress	levels	and	are,	indeed,	two	of	the	
parameters	used	in	a	lie	detector.	What	surprised	us	in	our	initial	testing	was	the	
sensitivity	of	these	indicators.		
	

With	a	convenience	group	of	co-investigators	in	the	project,	we	examined	how	the	heart	
rate	and	GSR	varied	as	they	navigated	a	challenging	OpenLabyrinth	virtual	patient	case.	For	
the	cases,	we	modified	two	existing	VP	cases,	Gail’s	Dilemma	
(http://demo.openlabyrinth.ca/renderLabyrinth/index/727) and	Rushing	Roulette	
(http://demo.openlabyrinth.ca/renderLabyrinth/index/723).	There	were	already	some	time	
pressures	and	intensity	inherent	in	these	cases	but	we	decided	to	up	the	ante	by	using	a	
new	function	in	OpenLabyrinth,	with	timer-enforced	popup	warning	messages	and	
navigational	jumps	propelling	them	onwards	at	an	ever-increasing	pace.	The	first	case	
generally	lasts	about	15	minutes,	whereas	the	second	case	set	of	20	mini-cases	can	usually	
be	completed	within	5-8	minutes.	This	gave	us	sufficient	time	to	observe	changes	but	was	
short	enough	to	be	able	to	run	multiple	iterations	without	participant	burnout.		
	
Our	group	consisted	of	three	experienced	physician	teachers,	a	public	health	professional	
with	extensive	virtual	patient	experience,	and	a	computer	science	student	familiar	with	the	
platform	performance.	We	videotaped	the	session	for	later	analysis,	while	we	recorded	
their	performance	on	the	VP	cases.	We	also	kept	independent	field	notes	during	the	session	
for	later	triangulation	of	observations.	We	connected	each	participant	to	the	heart	rate	and	
GSR	sensors	then	watched	the	changes	while	they	each	navigated	the	VP	cases	in	turn.		
	
It	was	fascinating	to	note	how	the	different	participants	responded	to	the	stress	of	the	
cases.	As	expected,	with	their	varying	backgrounds,	each	found	different	elements	of	the	VP	
cases	to	be	challenging	in	different	ways.	All	participants	found	that	the	increasingly	tight	
timing	was	stressful	or	annoying.	Normally,	the	time	interval	allowed	for	decisions	on	the	
mini-cases	is	30	seconds.	For	this	series,	we	started	at	25	seconds,	subtracted	a	second	for	
each	subsequent	case,	leading	to	only	6	seconds	for	the	final	case,	which	is	barely	enough	
time	to	read	it,	let	alone	make	an	informed	decision.		
	
Other	factors	in	the	case	play	were	apparently	stressful	to	each	participant	in	different	
ways.	Some	disliked	having	to	make	decisions	based	on	incomplete	data;	some	found	that	
interface	quirks	that	arose	were	quite	annoying.	But	we	were	easily	able	to	detect	these	
changes	in	stress	level,	even	when	quite	subtle.	One	participant,	well	known	for	cool	
performance	under	pressure,	maintained	a	remarkably	consistent	set	of	parameters,	until	
the	time-out	crossed	the	point	of	reasonable	readability	for	the	case.	As	soon	as	a	forced	
jump	kicked	in,	there	was	change	in	both	HR	and	GSR.		
	
Two	of	the	participants	in	this	group	were	on	significant	doses	of	beta	blockers	for	an	
unrelated	medical	condition.	We	anticipated	that	this	might	blunt	the	stress	response	and	
limit	the	usefulness	of	the	sensors.	While	both	of	them	had	very	low	resting	heart	rates	(58	
and	62	beats	per	minute	(BPM)	respectively),	the	sensors	were	still	able	to	easily	detect	a	
change	in	their	stress	levels	as	they	challenged	the	cases.		
	
We	were	delighted	by	these	early	findings,	which	were	much	more	sensitive	than	we	
suspected.	Despite	the	mild	but	intentional	stressors	induced	in	this	scenario,	all	
participants	reported	that	the	cases	were	engaging	and	the	experience	was	enjoyable.	They	
were	intrigued	to	see	clear	demonstration	that	there	was	an	apparently	tight	association	
between	their	mild	stress	levels	and	sensor	findings.		

	
Developing	the	xAPI	Sensor	Interface	
	
All	the	steps	up	to	this	point	had	been	fairly	easy	to	implement	and	were	starting	to	show	
an	interesting	confluence	of	factors	and	data.	We	anticipated	that	completing	the	interface	
between	sensor	tracking	and	the	LRS	would	also	be	quite	simple.		
	
We	enlisted	the	assistance	of	computer	science	student	(CA)	in	coding	the	Arduino	sensor	
interface	and	xAPI	integration.	This	was	to	be	part	of	a	self-learning	project,	with	
recognition	for	course	credits.		
	
Using	the	Processing	Integrated	Development	Environment	(PIDE),	the	initial	steps	with	
the	sensor	and	the	Arduino	engine	were	quite	straightforward.	Using	the	Arduino	to	send	
out	values	via	the	serial	port	to	the	processing	PIDE	with	a	character	in	front	of	the	Value	
so	that	PIDE	knew	what	sensor	the	value	was	coming	from.	PIDE	would	then	display	this	
with	a	visualization	that	would	show	the	heart	waveform	and	BPM	values.	Due	to	the	
limitations	of	PIDE,	it	was	unable	to	send	a	properly	formatted	HTTP	post	request	to	the	
LRS	with	a	JSON	statement.	We	had	to	convert	the	PIDE	code	to	the	more	powerful	Eclipse	
IDE.	Various	additional	tools	were	needed	to	get	the	PIDE	code	up	and	running	on	the	
Eclipse	IDE,	including	importing	all	of	the	proper	libraries	from	PIDE.		
	

	
Figure	2:	PIDE	output	window	showing	heart	rate	and	GSR	output	data	from	the	Arduino	sensors	

Now	that	the	program	was	functioning	in	Eclipse,	we	were	able	to	use	the	existing	xAPI	
libraries	to	set	up	a	client	that	would	send	xAPI	statements	to	the	LRS	at	any	interval	that	
we	chose	(in	this	case	every	five	seconds).	These	values	would	then	display	side	by	side	
with	what	the	learner	was	doing	in	the	test	case.	
	
	
{	
 verb : {	

 id : http://adlnet.gov/expapi/verbs/imported,	
 display : {	

 en-US : imported	
 }	

 },	
 actor : {	

 name : medbiq,	

 mbox : mailto:info@openlabyrinth.ca,	
 objectType : Agent	

 },	
 object : {	

 id : http://demo.openlabyrinth.ca,	
 definition : {	

 interactionType : choice,	
 choices : [

 {	
 id : http://demo.openlabyrinth.ca,	
 description : {	

 GSR:3219 : BPM:153	
 }	

 }	
]	

 }	
 },	
 id : a7eb9501-d0ae-4cf9-adbb-a912439f7727,	
 stored : 2016-05-17T18:29:36.140Z,	
 timestamp : 2016-05-17T18:29:36.140Z,	
 authority : {	

 account : {	
 homePage : http://openlabyrinth.ca/grassblade-lrs/xAPI/,	
 name : 14-1e2c639ccc936c7	

 },	
 objectType : Agent	

 }	
}	
Figure	3:	example	xAPI	statement	generated	by	our	Arduino	device	

Please	note	that	Figure	3	is	for	illustrative	purposes.	It	is	likely	there	will	be	further	
changes	to	the	verbs	used	by	the	device,	and	that	the	interactionType	will	be	changed	from	
‘choice’	to	‘device’.	At	present,	the	Profiles	in	this	area	are	still	evolving.		
	
We	had	a	few	small	problems	with	xAPI	statement	formatting	but	with	help	from	members	
of	the	xAPI	community,	we	were	able	to	successfully	link	our	GrassBlade	LRS.	In	particular,	
we	owe	many	thanks	and	wish	to	acknowledge	the	extensive	help	we	received	from	Pankaj	
Agrawal	at	GrassBlade,	Andrew	Downes	at	Rustici,	and	Corey	Wirun	at	Cardinal	Creek.		
	

The	formatting	of	our	xAPI	statements	from	a	device	still	needs	to	be	refined.	But	the	
important	aspect	here	was	that	the	output	was	still	useful	and	usable	in	its	current	
temporary	format.		
	
Other	potential	xAPI	sources	
	
A	number	of	other	sources	of	activity	tracking	were	considered,	explored	and	partially	
incorporated	into	the	workshop	scenario	design.	For	example,	we	initially	explored	the	
potential	use	of	the	Tobii	range	of	eye-tracking	sensors.	Tobii	makes	a	very	sophisticated	
range	of	sensors	for	research	purposes	but	most	of	these	are	quite	expensive.	One	of	the	
learning	design	parameters	that	we	chose	for	this	workshop	was	accessibility	and	
affordability.	We	had	hoped	to	use	the	simpler	outputs	from	the	Tobii	EyeX	Controller	
(www.tobii.com/xperience),	which	is	much	cheaper.	However,	the	company	was	
overwhelmed	with	demand	for	this	level	of	sensor	and	was	not	able	to	assist	us	with	this	
integration.	This	may	be	worth	exploring	in	future.		
	
We	also	noted	that	it	is	now	quite	possible	to	blend	the	actions	and	effects	of	a	number	of	
web-based	applications,	using	software	like	Zapier	(https://zapier.com)	and	If	This	Then	
That	(IFTTT	--	https://ifttt.com).	We	were	able	to	create	some	interesting	integrations	
between	WordPress,	Instagram,	Evernote,	Twitter	and	the	smartphone	camera	itself,	in	
ways	that	can	further	generate	xAPI	statements	to	be	stored	in	our	GrassBlade	LRS.	While	
integrations	are	very	simple	to	implement,	in	the	final	set	up	of	the	workshop,	we	did	not	
rely	much	on	these	integrations.	They	did	provide	some	of	the	workshop	participants	with	
additional	means	of	contributing	and	actively	tracking,	with	the	use	of	xAPI	statements,	the	
complex	activity	flows	of	this	very	dynamic	session.		
	
We	were	caught	out	by	a	discrepancy	in	the	business	model	of	Zapier.	For	demonstration	
purposes,	we	intended	to	set	up	the	five	free	Zapier	interactions	that	are	advertised.	
However,	we	found	that	Zapier’s	billing	structures	required	payment	as	soon	as	we	set	up	
the	second	interaction	channel.	We	did	not	have	time	to	explore	this	billing	inconsistency	
and	did	not	consider	that	the	value	added	was	worth	it	at	this	point,	so	we	simply	
continued	with	the	free	IFTTT	service.		
	

	
Figure	4:	simple	data	flow	diagram	showing	how	xAPI	statements	were	used	between	different	applications	

	
Deploying	the	Workshop	
	
All	of	these	multiple	activities	and	data	sources	came	together	Just	In	Time.	We	are	
particularly	indebted	to	CA	for	an	extraordinary	effort	in	bringing	together	the	pieces	
needed	for	meaningful	xAPI	statements	from	our	Arduino-based	sensors.	He	was	able	to	
coordinate	and	collate	multiple	streams	of	advice	from	many	in	the	xAPI	community.	
Sometimes	there	is	not	a	lot	of	sleep	on	the	bleeding	edge.		
	
For	the	Medbiq	workshop,	we	were	able	to	demonstrate	a	live	working	example	of	tracking	
activity	data	from	the	following	resources:	

1. Heart	rate,	via	Arduino	sensor	
2. GSR,	from	Arduino	sensor	
3. Mouse	click	timings	from	OpenLabyrinth	
4. Decision	tree	responses	from	OpenLabyrinth	
5. Question	responses	from	OpenLabyrinth	
6. Forced	navigation	jumps	and	timeouts	from	OpenLabyrinth	
7. H5P	widget	input	from	OpenLabyrinth	
8. H5P	widget	input	from	WordPress	
9. Evernote	notes	via	WordPress	
10. IFTTT	DO	Camera	images	via	WordPress	

	
In	the	spirit	of	engaging	as	many	workshop	participants	as	possible,	as	well	as	tracking	
activity	and	stress	sensors	on	our	volunteers,	we	were	also	able	to	engage	active	

contributions	and	learning	activities	from	parallel	participants	as	they	used	the	additional	
data	sources	to	contribute	to	the	overall	data	stream.		
	
The	workshop	was	successful	in	addressing	a	wide	variety	of	participant	needs.	We	had	a	
mix	of	those	who	were	primarily	interested	in	the	technical	aspects	of	xAPI;	those	who	
were	interested	in	exploring	what	could	be	done	with	such	metrics;	and	those	who	were	
interested	in	exploring	the	enhanced	variety	of	learning	designs	that	could	be	supported	by	
such	a	multi-modality	approach.		
	
There	appeared	to	be	a	very	high	degree	of	engagement	in	all	levels	of	the	various	
activities,	which	sometimes	made	it	difficult	to	keep	everyone	on	track.	When	time	was	up,	
the	room	was	slow	to	clear	because	of	the	continuing	level	of	very	active	discussion.	Note	
that	this	was	one	of	the	final	sessions	of	the	conference,	when	most	people	are	starting	to	
flag.		
	
Analyzing	the	LRS	Data	
	
As	soon	as	we	started	collecting	xAPI	statements	in	our	GrassBlade	LRS,	we	were	able	to	
perform	some	basic	analysis	using	its	built-in	tools.		
	

	
Figure	5:	example	dashboard	from	GrassBlade	LRS	

As	we	noted	earlier,	GrassBlade	is	very	forgiving	in	its	parsing	of	xAPI	statements.	This	
makes	things	much	easier	to	set	up,	rather	than	just	slogging	through	a	long	series	of	error	
statements,	which	we	very	much	appreciated.	We	also	greatly	appreciated	the	accessibility	
of	GrassBlade’s	creator,	Pankaj	Agrawal,	who	was	very	helpful	in	troubleshooting	
throughout	all	phases	of	the	project.		
	
We	were	also	very	fortunate	to	receive	much	help	and	advice	from	Rustici	Software.	They	
provided	us	with	free	access	to	sandbox	accounts	on	both	their	SCORM	Cloud	
(http://scorm.com/scorm-solved/scorm-cloud-features)	and	Watershed	LRSs	

(www.watershedlrs.com).	SCORM	Cloud	has	a	number	of	testing	functions	which	make	it	
easier	for	developers	to	fine	tune	the	syntax	of	their	xAPI	statements,	including	a	manual	
xAPI	Generator	(https://tincanapi.com/statement-generator).	
		
	

	
Figure	6:	example	dashboard	from	Watershed	LRS	

The	Watershed	LRS	is	a	much	more	powerful	animal,	with	serious	horsepower	and	
powerful	visualizations.	This	was	largely	overkill	for	the	simple	aspects	of	this	project	and	
well	beyond	the	budget	available.	However,	Andrew	Downes	from	Rustici,	and	Pankaj,	
were	extremely	helpful	in	fine	tuning	the	interfaces	in	their	respective	LRSs	so	that	we	
could	explore	direct	data	integration	between	Learning	Record	Stores.	This	gave	us	access	
to	some	data	visualizations	available	in	Watershed,	by	directly	pulling	xAPI	statements	
from	the	GrassBlade	LRS,	and	allowed	us	to	explore	the	power	of	big	league	LRS,	while	still	
using	the	simple	flexibility	of	GrassBlade	for	our	initial	data	capture.	We	cannot	applaud	
enough	the	collaboration	evident	in	the	xAPI	community	in	surmounting	the	challenges	
that	we	found	in	taking	this	multi-layered	approach.		
	
We	briefly	explored	the	higher	levels	of	assessment	beyond	activity	metrics,	based	on	xAPI	
statements,	that	might	be	afforded	by	Mozilla	OpenBadges	(http://openbadges.org).	The	
Watershed	LRS	does	provide	some	basic	functionality	that	supports	integration	of	Badges.	
However,	on	further	discussion	with	the	Rustici	team,	it	was	clear	that	few	in	medical	
education	are	interested	in	using	Mozilla	Badges	at	this	point	and	therefore	we	redirected	
our	efforts.		
	

We	were	also	fortunate	to	have	access	to	a	free	trial	account	on	the	Saltbox	Wax	LRS	
(www.saltbox.com).	We	initially	thought	that	it	would	just	be	interesting	to	simultaneously	
send	xAPI	statements	to	3	different	LRSs	from	OpenLabyrinth.	This	was	surprisingly	easy	
to	set	up	and	did	not	exact	too	much	of	a	performance	hit	on	our	OpenLabyrinth	server.	It	
has	since	been	pointed	out	that	this	is	a	somewhat	redundant	approach.	It	is	in	the	nature	
of	LRSs	to	be	directly	federated.	So	it	would	be	more	effective	to	use	LRS	triggers	and	filters	
to	send	selected	statements	from	one	LRS	on	to	others,	rather	than	to	expect	the	source	
software	to	handle	statement	sending	to	all	3	LRSs.		
	
The	testing	with	the	Wax	LRS	had	an	additional	benefit:	it	is	much	more	strict	in	its	parsing	
of	xAPI	statements.	After	some	initial	grumbling	on	our	part,	we	quickly	realized	the	
benefits	of	this:	it	enabled	our	developer	teams	to	be	much	more	exact	in	their	xAPI	
statement	parsing,	which	resulted	in	a	much	cleaner	set	of	xAPI	statements	from	
OpenLabyrinth	and	our	H5P	widgets.	We	thank	the	Saltbox	team	for	their	assistance	in	this.		
	
OpenLabyrinth	itself	has	quite	sophisticated	internal	tracking	and	reporting	of	activity	
metrics,	along	with	some	simple	visualizations.		
	

	
Figure	7:	pathway	analysis	report	generated	internally	by	OpenLabyrinth	

Indeed,	the	OpenLabyrinth	developer	team	was	initially	perplexed	as	to	why	we	were	
introducing	the	additional	complexity	of	xAPI	statement	reporting	since,	at	that	stage,	we	
were	able	to	achieve	the	same	level	of	activity	reporting	using	its	own	functions.	However,	
since	we	implemented	xAPI	reporting	directly	into	OpenLabyrinth,	several	advantages	
have	become	clear.		
	

Firstly,	it	has	afforded	simultaneous	activity	tracking	across	a	much	wider	range	of	learning	
activities,	not	just	OpenLabyrinth,	as	described	in	the	paragraphs	above.	Secondly,	it	has	
relieved	our	developer	team	of	the	continuing	burden	of	creating	custom	reports	for	
various	research	groups.	This	is	the	bane	of	many	databased	research	tools	and	can	
become	a	huge	drain	on	resources.	But	thirdly,	and	most	importantly,	it	has	given	us	access	
to	a	much	wider	range	of	data	visualization	tools.		
	
With	the	integration	of	xAPI,	we	have	now	moved	into	the	Big	Data	world	in	learning	
analytics	(Topps,	Meiselman,	Ellaway,	&	Downes,	2016).	We	state	this,	based	not	upon	the	
Volumes	of	data	we	are	generating	(although	these	are	rapidly	increasing),	but	more	upon	
the	other	Vs	that	are	common	in	the	principles	of	Big	Data	analytics:	Velocity,	Variety,	
Veracity	and	Visualization	(Kobielus,	2013).		
	
By	placing	our	activity	metrics	in	a	common	format,	within	an	LRS	that	is	designed	to	
accept	large	volumes	of	data	from	multiple	sources	and	federate	them	with	other	services,	
we	can	now	take	advantage	of	some	of	the	more	powerful	visualization	and	analytic	tools	
beyond	the	world	of	medical	education.		
	
It	also	allows	us	to	explore	both	powerful	commercial	visualization	tools	like	Tableau	
(www.tableau.com),	which	is	designed	for	use	with	very	large	data	sets,	and	also	cheap	but	
versatile	visualization	libraries	like	D3.js	(https://d3js.org),	an	open-source,	componentized	
visualization	library.		

Discussion	
	
For	this	Technical	Report,	we	have	not	adhered	to	the	rigid	IMRAD	structure	common	to	
most	academic	articles,	in	the	belief	that	highlighting	some	of	the	design	issues	that	arose	
during	the	design-based	research	elements	of	the	project	was	more	consistent	with	our	
discovery	oriented	approach.	Hence,	several	of	the	discussion	points	have	already	been	
covered	earlier.	We	would	however	like	to	further	highlight	some	important	points	that	
arose	from	the	project	as	a	whole.		
	
It	was	very	clear	that	the	lowered	cost	of	integrating	different	systems	using	a	single	API	
that	tracks	events	and	metadata	is	a	big	advantage	of	using	xAPI.	We	found	that	xAPI	makes	
it	possible	to	adapt	low	cost,	open	source	tools	for	sensors	and	learning	interactions,	and	
we	can	now	track	data	that	may	illuminate	the	learning	process	far	beyond	what	was	
possible	with	SCORM.	What	we	did	in	measuring	stress	parameters	in	learners,	while	
engaged	in	an	educational	exercise	was	not	particularly	new	(Hardy,	Mullen,	&	Jones,	
1996)(Arora	et	al.,	2010).	But	previous	efforts	have	required	a	sophisticated	simulation	
laboratory	with	expensive	suites	of	sensor	equipment,	which	are	largely	beyond	the	budget	
of	most	education	researchers.	Other	attempts	have	used	subjective	measures	of	perceived	
stress	(Cohen,	Kamarck,	&	Mermelstein,	1983)	which,	while	still	relevant,	have	their	own	
biases	and	lack	of	sensitivity.	Our	approach,	using	simple	sensors	and	cheap	computing	
devices,	along	with	a	flexible	approach	for	gathering	activity	metrics	from	multiple	sources	
represents	an	interesting	advance	in	this	area.		

	

Conclusions	
	
Data	from	multiple	sources	greatly	extends	our	ability	to	track	what	learners	actually	do,	
not	what	they	say	they	do	or	what	their	teachers	say	they	do,	thus	potentially	reducing	
many	sources	of	bias.		
	
Loose	aggregation	of	activities	via	xAPI	is	more	practical	than	the	tight	coupling	previously	
envisioned	by	SCORM	as	a	translation	mechanism.	By	loosely	coupling	the	data	flows,	we	
expect	that	there	will	be	greater	flexibility	in	learning	designs	and	less	dependency	on	
keeping	structural	changes	within	communicating	systems	such	as	LMSs,	LRSs,	virtual	
patients,	all	aligned	with	each	other.		
	
Cheap	computing	devices	like	Arduino	improve	researcher	access	to	sensor	data	through	
greater	access	to	a	broad	developer	community	with	an	open-source	attitude	to	design	
recipes;	reduced	cost	of	hardware	and	software	development;	and	an	ever	expanding	range	
of	sensor	modalities.		

Bibliography	
	
Abbey,	D.	(2016).	Learning	Locker	on	Github.	Retrieved	June	18,	2016,	from	

https://github.com/LearningLocker/learninglocker/releases	
Arora,	S.,	Sevdalis,	N.,	Nestel,	D.,	Woloshynowych,	M.,	Darzi,	A.,	&	Kneebone,	R.	(2010).	The	

impact	of	stress	on	surgical	performance:	a	systematic	review	of	the	literature.	
Surgery,	147(3),	318–30,	330.e1–6.	http://doi.org/10.1016/j.surg.2009.10.007	

Cohen,	S.,	Kamarck,	T.,	&	Mermelstein,	R.	(1983).	A	Global	Measure	of	Perceived	Stress.	
Journal	of	Health	and	Social	Behavior,	24(4),	385.	http://doi.org/10.2307/2136404	

Hardy,	L.,	Mullen,	R.,	&	Jones,	G.	(1996).	Knowledge	and	conscious	control	of	motor	actions	
under	stress.	British	Journal	of	Psychology,	87(4),	621–636.	
http://doi.org/10.1111/j.2044-8295.1996.tb02612.x	

Kaplan,	M.	(2014).	When	to	Use	MongoDB	Rather	than	MySQL	(or	Other	RDBMS).	Retrieved	
June	18,	2016,	from	https://dzone.com/articles/when-use-mongodb-rather-mysql	

Kobielus,	J.	(2013).	The	Four	V’s	of	Big	Data.	Retrieved	June	18,	2016,	from	
http://www.ibmbigdatahub.com/infographic/four-vs-big-data	

Korneliusz.	(2014).	MongoDB	vs	MySQL:	Comparison	Between	RDBMS	and	Document	
Oriented	Database.	Retrieved	June	18,	2016,	from	https://blog.udemy.com/mongodb-
vs-mysql/	

Lalley,	J.,	&	Miller,	R.	(2007).	THE	LEARNING	PYRAMID:	DOES	IT	POINT	TEACHERS	IN	THE	
RIGHT	DIRECTION?	Education,	128(1),	64–79.	

Mei,	S.	(2013).	Why	You	Should	Never	Use	MongoDB.	Retrieved	June	18,	2016,	from	
http://www.sarahmei.com/blog/2013/11/11/why-you-should-never-use-mongodb	

Meiselman,	E.,	Topps,	D.,	&	Albersworth,	C.	(2016).	Medbiq	xAPI	workshop.	In	V.	Strothers	
&	P.	Greene	(Eds.),	Medbiq	Annual	Conference.	Baltimore,	MD.	Retrieved	from	

http://www.slideshare.net/topps/medbiq-xapi-workshop2b	
Miller,	G.	E.	(1990).	The	assessment	of	clinical	skills/competence/performance.	Academic	

Medicine :	Journal	of	the	Association	of	American	Medical	Colleges,	65(9	Suppl),	S63–7.	
Retrieved	from	http://www.ncbi.nlm.nih.gov/pubmed/2400509	

Topps,	D.,	Meiselman,	E.,	Ellaway,	R.,	&	Downes,	A.	(2016).	Aggregating	Ambient	_Student	
Tracking	Data	for	Assessment.	In	Ottawa	Conference.	Perth,	WA:	AMEE.	Retrieved	from	
http://www.slideshare.net/topps/aggregating-ambient-student-tracking-data-for-
assessment	

Topps,	D.,	Meiselman,	E.,	&	Strothers,	V.	(2016).	Medbiq	xAPI	Virtual	Patient	Profile.	
Baltimore.	Retrieved	from	
http://groups.medbiq.org/medbiq/display/XIG/Profile%3A+1.+Virtual+Patients	

	

